Problem 736
Paths to Equality
Define two functions on lattice points:
$$r(x,y) = (x+1,2y)$$
$$s(x,y) = (2x,y+1)$$
A path to equality of length $n$ for a pair $(a,b)$ is a sequence $\Big((a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\Big)$, where:
- $(a_1,b_1) = (a,b)$
- $(a_k,b_k) = r(a_{k-1},b_{k-1})$ or $(a_k,b_k) = s(a_{k-1},b_{k-1})$ for $k >1$
- $a_k \ne b_k$ for $k<n$
- $a_n = b_n$
$a_n = b_n$ is called the final value.
For example,
$$(45,90)\xrightarrow{r} (46,180)\xrightarrow{s}(92,181)\xrightarrow{s}(184,182)\xrightarrow{s}(368,183)\xrightarrow{s}(736,184)\xrightarrow{r}$$
$$(737,368)\xrightarrow{s}(1474,369)\xrightarrow{r}(1475,738)\xrightarrow{r}(1476,1476)$$
This is a path to equality for $(45,90)$ and is of length $10$ with final value $1476$. There is no path to equality of $(45,90)$ with smaller length.
Find the unique path to equality for $(45,90)$ with smallest odd length. Enter the final value as your answer.
趋等路径
对格点定义如下两个函数:
$$r(x,y) = (x+1,2y)$$
$$s(x,y) = (2x,y+1)$$
对于数对$(a,b)$,一条长度为$n$的趋等路径是指满足如下条件的序列$\Big((a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\Big)$:
- $(a_1,b_1) = (a,b)$
- 对于所有$k>1$,$(a_k,b_k) = r(a_{k-1},b_{k-1})$或$(a_k,b_k) = s(a_{k-1},b_{k-1})$
- 对于所有$k<n$,$a_k \ne b_k$
- $a_n = b_n$
$a_n = b_n$被称为该路径的终值。
例如,
$$(45,90)\xrightarrow{r} (46,180)\xrightarrow{s}(92,181)\xrightarrow{s}(184,182)\xrightarrow{s}(368,183)\xrightarrow{s}(736,184)\xrightarrow{r}$$
$$(737,368)\xrightarrow{s}(1474,369)\xrightarrow{r}(1475,738)\xrightarrow{r}(1476,1476)$$
这是数对$(45,90)$的一条趋等路径,其长度为$10$,终值为$1476$。对于数对$(45,90)$,不存在更短的趋等路径。
对于数对$(45,90)$,求其长度为奇数的趋等路径中唯一最短的那条,并将其终值作为你的答案。