Problem 742
Minimum area of a convex grid polygon
A symmetrical convex grid polygon is a polygon such that:
- All its vertices have integer coordinates.
- All its internal angles are strictly smaller than $180^\circ$.
- It has both horizontal and vertical symmetry.
For example, the left polygon is a convex grid polygon which has neither horizontal nor vertical symmetry, while the right one is a valid symmetrical convex grid polygon with six vertices:
Define $A(N)$, the minimum area of a symmetrical convex grid polygon with $N$ vertices.
You are given $A(4) = 1$, $A(8) = 7$, $A(40) = 1039$ and $A(100) = 17473$.
Find $A(1000)$.
格点凸多边形的最小面积
对称格点凸多边形是指满足以下条件的多边形:
- 所有顶点的坐标均为整数。
- 所有内角严格小于$180^\circ$。
- 在水平和竖直方向上对称。
例如,下图左的多边形是格点凸多边形,但是在水平和竖直方向上均不对称;而下图右的多边形则是一个有六个顶点的对称格点凸多边形:
记$A(N)$为所有有$N$个顶点的对称格点凸多边形的最小面积。
已知$A(4) = 1$,$A(8) = 7$,$A(40) = 1039$,$A(100) = 17473$。
求$A(1000)$。