Problem 747
Triangular Pizza
Mamma Triangolo baked a triangular pizza. She wants to cut the pizza into $n$ pieces. She first chooses a point $P$ in the interior (not boundary) of the triangle pizza, and then performs $n$ cuts, which all start from $P$ and extend straight to the boundary of the pizza so that the $n$ pieces are all triangles and all have the same area.
Let $\psi(n)$ be the number of different ways for Mamma Triangolo to cut the pizza, subject to the constraints.
For example, $\psi(3)=7$.
Also $\psi(6)=34$, and $\psi(10)=90$.
Let $\Psi(m)=\displaystyle\sum_{n=3}^m \psi(n)$. You are given $\Psi(10)=345$ and $\Psi(1000)=172166601$.
Find $\Psi(10^8)$. Give your answer modulo $1\ 000\ 000\ 007$.
三角形披萨
特莱格伦夫人打算把一块三角形的披萨分成$n$片。她先在三角形披萨的内部(而非边缘)选择一个点$P$,然后从点$P$出发切$n$刀至披萨边缘,将披萨分成$n$个面积相同的小三角形。
记$\psi(n)$为满足特莱格伦夫人上述要求的披萨切法。
例如,$\psi(3)=7$。
此外,$\psi(6)=34$,$\psi(10)=90$。
记$\Psi(m)=\displaystyle\sum_{n=3}^m \psi(n)$。已知$\Psi(10)=345$,$\Psi(1000)=172166601$。
求$\Psi(10^8)$,并将你的答案对$1\ 000\ 000\ 007$取余。