Problem 75
Singular integer right triangles
It turns out that $12$ cm is the smallest length of wire that can be bent to form an integer sided right angle triangle in exactly one way, but there are many more examples.
$12$ cm: $(3,4,5)$
$24$ cm: $(6,8,10)$
$30$ cm: $(5,12,13)$
$36$ cm: $(9,12,15)$
$40$ cm: $(8,15,17)$
$48$ cm: $(12,16,20)$
In contrast, some lengths of wire, like $20$ cm, cannot be bent to form an integer sided right angle triangle, and other lengths allow more than one solution to be found; for example, using $120$ cm it is possible to form exactly three different integer sided right angle triangles.
$120$ cm: $(30,40,50), (20,48,52), (24,45,51)$
Given that $L$ is the length of the wire, for how many values of $L \le 1,500,000$ can exactly one integer sided right angle triangle be formed?
唯一的整数边直角三角形
若电线只能以唯一方式弯折成整数边直角三角形,则电线的最短长度是$12$厘米;当然,还有很多种长度的电线都只能以唯一方式弯折成整数边直角三角形,例如:
$12$厘米: $(3,4,5)$
$24$厘米: $(6,8,10)$
$30$厘米: $(5,12,13)$
$36$厘米: $(9,12,15)$
$40$厘米: $(8,15,17)$
$48$厘米: $(12,16,20)$
相反地,有些长度的电线,比如$20$厘米,不可能弯折成任何整数边直角三角形,而另一些长度的电线则有多种解法;例如,$120$厘米的电线可以弯折成三个不同的整数边直角三角形。
$120$厘米: $(30,40,50), (20,48,52), (24,45,51)$
记电线长度为$L$,对于$L \le 1,500,000$,有多少种电线长度只能以唯一方式弯折成整数边直角三角形?