Problem 755
Not Zeckendorf
Consider the Fibonacci sequence ${1,2,3,5,8,13,21,\ldots}$.
We let $f(n)$ be the number of ways of representing an integer $n\ge 0$ as the sum of different Fibonacci numbers.
For example, $16 = 3+13 = 1+2+13 = 3+5+8 = 1+2+5+8$ and hence $f(16) = 4$. By convention $f(0) = 1$.
Further we define
$$\displaystyle S(n) = \sum_{k=0}^n f(k)$$
You are given $S(100) = 415$ and $S(10^4) = 312807$.
Find $\displaystyle S(10^{13})$.
非齐肯多夫表示
考虑斐波那契数列${1,2,3,5,8,13,21,\ldots}$。
记$f(n)$为将整数$n\ge 0$表示为不同斐波那契数之和的方法数。
例如,$16 = 3+13 = 1+2+13 = 3+5+8 = 1+2+5+8$,因此$f(16) = 4$。按照惯例,记$f(0) = 1$。
我们进一步定义
$$\displaystyle S(n) = \sum_{k=0}^n f(k)$$
已知$S(100) = 415$,$S(10^4) = 312807$。
求$\displaystyle S(10^{13})$。
译注:齐肯多夫表示是指将一个整数表示为不连续的不同斐波那契数之和,根据齐肯多夫定理可知该表示唯一;而本题不要求不连续。