Problem 757
Stealthy Numbers
A positive integer $N$ is stealthy, if there exist positive integers $a$, $b$, $c$, $d$ such that $ab = cd = N$ and $a+b = c+d+1$.
For example, $36 = 4\times 9 = 6\times 6$ is stealthy.
You are also given that there are $2851$ stealthy numbers not exceeding $10^6$.
How many stealthy numbers are there that don’t exceed $10^{14}$?
隐匿数
对于正整数$N$,若存在正整数$a$、$b$、$c$、$d$使得$ab=cd=N$且$a+b=c+d+1$,则称$N$为隐匿数 。
例如,$36 = 4\times 9 = 6\times 6$是一个隐匿数。
已知在不超过$10^6$的范围内有$2851$个隐匿数。
在不超过$10^{14}$的范围内,有多少个隐匿数?