0%

Problem 759


Problem 759


A squared recurrence relation

The function $f$ is defined for all positive integers as follows:
$$f(1)=1$$
$$f(2n)=2f(n)$$
$$f(2n+1)=2n+1+2f(n)+\frac{1}{n}f(n)$$
It can be proven that $f(n)$ is integer for all values of $n$.

The function $S(n)$ is defined as $S(n) = \displaystyle \sum_{i=1}^n f(i) ^2$.

For example, $S(10)=1530$ and $S(10^2)=4798445$.

Find $S(10^{16})$. Give your answer modulo $1\ 000\ 000\ 007$.


递推数列的平方和

定义在正整数上的函数$f$满足以下递推关系:
$$f(1)=1$$
$$f(2n)=2f(n)$$
$$f(2n+1)=2n+1+2f(n)+\frac{1}{n}f(n)$$
可以证明,对于任意$n$,$f(n)$的取值均为整数。

再定义函数$S(n)$为$S(n) = \displaystyle \sum_{i=1}^n f(i) ^2$。

例如,$S(10)=1530$,$S(10^2)=4798445$。

求$S(10^{16})$,并将你的答案对$1\ 000\ 000\ 007$取余。