Problem 762
Amoebas in a 2D grid
Consider a two dimensional grid of squares. The grid has $4$ rows but infinitely many columns.
An amoeba in square $(x, y)$ can divide itself into two amoebas to occupy the squares $(x+1,y)$ and $(x+1,(y+1) \bmod 4)$, provided these squares are empty.
The following diagrams show two cases of an amoeba placed in square A of each grid. When it divides, it is replaced with two amoebas, one at each of the squares marked with B:
Originally there is only one amoeba in the square $(0, 0)$. After $N$ divisions there will be $N+1$ amoebas arranged in the grid. An arrangement may be reached in several different ways but it is only counted once. Let $C(N)$ be the number of different possible arrangements after $N$ divisions.
For example, $C(2) = 2$, $C(10) = 1301$, $C(20)=5895236$ and the last nine digits of $C(100)$ are $125923036$.
Find $C(100\ 000)$, enter the last nine digits as your answer.
二维格阵中的阿米巴原虫
考虑一个有$4$行、无穷列的二维格阵。
原本位于方格$(x,y)$中的一只阿米巴原虫,在目标方格没有被占据的情况下,可以将自身分裂成两只阿米巴原虫,并分别占据方格$(x+1,y)$和$(x+1,(y+1) \bmod 4)$。
在下图所示的两种情况中,一只阿米巴原虫原本位于方格A。在分裂为两只阿米巴原虫后,则分别占据了两个标记有B的方格:
一开始只有一只阿米巴原虫位于方格$(0, 0)$。经过$N$次分裂之后,格阵中将会分布有$N+1$只阿米巴原虫。不同的分裂顺序可能形成相同的分布情况,这些分布均算作相同的分布。记$C(N)$为经过$N$次分裂后所有可能的不同分布的总数。
例如,$C(2) = 2$,$C(10) = 1301$,$C(20)=5895236$,而$C(100)$的最后九位数字是$125923036$。
求$C(100\ 000)$,并将其最后九位数字作为你的答案。