Problem 768
Chandelier
A certain type of chandelier contains a circular ring of $n$ evenly spaced candleholders.
If only one candle is fitted, then the chandelier will be imbalanced. However, if a second identical candle is placed in the opposite candleholder (assuming $n$ is even) then perfect balance will be achieved and the chandelier will hang level.
Let $f(n,m)$ be the number of ways of arranging $m$ identical candles in distinct sockets of a chandelier with $n$ candleholders such that the chandelier is perfectly balanced.
For example, $f(4, 2) = 2$: assuming the chandelier’s four candleholders are aligned with the compass points, the two valid arrangements are “North & South” and “East & West”. Note that these are considered to be different arrangements even though they are related by rotation.
You are given that $f(12,4) = 15$ and $f(36, 6) = 876$.
Find $f(360, 20)$.
枝形吊灯
某种枝形吊灯上等距离安置了一圈共$n$个烛台。
如果只摆上一根蜡烛,那么吊灯将会失去平衡。必须在与第一根蜡烛相对的烛台上(假设$n$是偶数)摆上第二根完全相同的蜡烛,才能让吊灯保持平衡。
对于安置有$n$个烛台的吊灯,记$f(n,m)$为在不同的烛台上摆上共$m$根完全相同的蜡烛且仍能让吊灯保持平衡的方案总数。
例如,$f(4, 2) = 2$:不妨假设吊灯上的四个烛台恰好指向正东、正西、正南、正北方向,那么符合要求的两种方案是“正北和正南”以及“正东和正西”。注意尽管这两种方案可以经过旋转重合,但仍视为不同的方案。
此外,还已知$f(12,4) = 15$以及$f(36, 6) = 876$。
求$f(360, 20)$。