Problem 769
Binary Quadratic Form II
Consider the following binary quadratic form:
$$f(x,y)=x^2+5xy+3y^2$$
A positive integer $q$ has a primitive representation if there exist positive integers $x$ and $y$ such that $q = f(x,y)$ and $\gcd(x,y)=1$.
We are interested in primitive representations of perfect squares. For example:
$17^2=f(1,9)$
$87^2=f(13,40) = f(46,19)$
Define $C(N)$ as the total number of primitive representations of $z^2$ for $0 < z \leq N$.
Multiple representations are counted separately, so for example $z=87$ is counted twice.
You are given $C(10^3)=142$ and $C(10^{6})=142463$.
Find $C(10^{14})$.
二元二次型II
考虑如下二元二次型:
$$f(x,y)=x^2+5xy+3y^2$$
对于正整数$q$,若存在正整数$x$和$y$使得$q=f(x,y)$且$\gcd(x,y)=1$,则称之为$q$的本原表达式。
我们感兴趣的是完全平方数的本原表达式。例如:
$17^2=f(1,9)$
$87^2=f(13,40) = f(46,19)$
记$C(N)$为所有满足$0 < z \leq N$的完全平方数$z^2$的本原表达式数目之和。
同一个数的不同本原表达式单独计入,因此如$z=87$就有两组本原表达式。
已知$C(10^3)=142$和$C(10^{6})=142463$。
求$C(10^{14})$。