Problem 770
Delphi Flip
A and B play a game. A has originally $1$ gram of gold and B has an unlimited amount. Each round goes as follows:
- A chooses and displays, $x$, a nonnegative real number no larger than the amount of gold that A has.
- Either B chooses to TAKE. Then A gives B $x$ grams of gold.
- Or B chooses to GIVE. Then B gives A $x$ grams of gold.
B TAKEs $n$ times and GIVEs $n$ times after which the game finishes.
Define $g(X)$ to be the smallest value of $n$ so that A can guarantee to have at least $X$ grams of gold at the end of the game. You are given $g(1.7) = 10$.
Find $g(1.9999)$.
狡诈的先知
A和B正在玩一个游戏。游戏开始时,A持有$1$克黄金,而B则持有无穷的黄金。在每一轮游戏中:
- A选择并展示一个非负数实数$x$,且$x$不超过A持有的黄金数量。
- B可以选择拿走,此时A必须将$x$克黄金交给B。
- B也可以选择赠予,此时B必须将$x$克黄金交给A。
当B选择了恰好各$n$次拿走和赠予后,游戏结束。
记$g(X)$为最小的$n$,使得A能保证游戏结束时至少持有$X$克黄金。已知$g(1.7) = 10$。
求$g(1.9999)$。
译注:本题源自《科学美国人》2001年8月刊同名谜题,大意是赌徒向先知请教接下来数次硬币抛掷的结果,先知虽然能够准确预测未来,但偶尔也会撒谎,赌徒需要决定如何下注以最大化收益。