0%

Problem 771


Problem 771


Pseudo Geometric Sequences

We define a pseudo-geometric sequence to be a finite sequence $a_0, a_1, \ldots, a_n$ of positive integers, satisfying the following conditions:

  • $n \geq 4$, i.e. the sequence has at least 5 terms.
  • $0 < a_0 < a_1 < \ldots < a_n$, i.e. the sequence is strictly increasing.
  • $| a_i^2 - a_{i - 1}a_{i + 1} | \le 2$ for $1 \le i \le n-1$.

Let $G(N)$ be the number of different pseudo-geometric sequences whose terms do not exceed $N$.

For example, $G(6) = 4$, as the following $4$ sequences give a complete list:

$$1, 2, 3, 4, 5 \qquad 1, 2, 3, 4, 6 \qquad 2, 3, 4, 5, 6 \qquad 1, 2, 3, 4, 5, 6$$

Also, $G(10) = 26$, $G(100) = 4710$ and $G(1000) = 496805$.

Find $G(10^{18})$. Give your answer modulo $1\ 000\ 000\ 007$.


伪等比数列

我们定义满足如下条件的有限正整数数列$a_0, a_1, \ldots, a_n$为伪等比数列

  • $n \geq 4$,即数列至少有5项。
  • $0 < a_0 < a_1 < \ldots < a_n$,即数列严格递增。
  • 对于$1 \le i \le n-1$,均有$| a_i^2 - a_{i - 1}a_{i + 1} | \le 2$。

记$G(N)$为各项均不超过$N$的不同伪等比数列的总数。

例如,$G(6) = 4$,这$4$种数列如下所示:

$$1, 2, 3, 4, 5 \qquad 1, 2, 3, 4, 6 \qquad 2, 3, 4, 5, 6 \qquad 1, 2, 3, 4, 5, 6$$

此外还已知$G(10) = 26$,$G(100) = 4710$以及$G(1000) = 496805$。

求$G(10^{18})$,并将你的答案对$1\ 000\ 000\ 007$取余。