Problem 772
Balanceable $k$-bounded partitions
A $k$-bounded partition of a positive integer $N$ is a way of writing $N$ as a sum of positive integers not exceeding $k$.
A balanceable partition is a partition that can be further divided into two parts of equal sums.
For example, $3 + 2 + 2 + 2 + 2 + 1$ is a balanceable $3$-bounded partition of $12$ since $3 + 2 + 1 = 2 + 2 + 2$. Conversely, $3 + 3 + 3 + 1$ is a $3$-bounded partition of $10$ which is not balanceable.
Let $f(k)$ be the smallest positive integer $N$ all of whose $k$-bounded partitions are balanceable. For example, $f(3) = 12$ and $f(30) \equiv 179092994 \pmod {1\ 000\ 000\ 007}$.
Find $f(10^8)$. Give your answer modulo $1\ 000\ 000\ 007$.
可平衡$k$-有界分拆
正整数$N$的分拆是指将$N$写作一系列正整数之和。若这些正整数均不超过$k$,则称之为$k$-有界分拆。若这些正整数能分成和相同的两组,则称之为可平衡分拆。
例如,$3 + 2 + 2 + 2 + 2 + 1$是$12$的一种可平衡$3$-有界分拆,因为$3 + 2 + 1 = 2 + 2 + 2$。反之,$3 + 3 + 3 + 1$是$10$的一种$3$-有界分拆,但不是可平衡分拆。
记$f(k)$是最小的正整数$N$,使得其所有的$k$-有界分拆都是可平衡分拆。例如,$f(3) = 12$,$f(30) \equiv 179092994 \pmod {1\ 000\ 000\ 007}$。
求$f(10^8)$,并将你的答案对$1\ 000\ 000\ 007$取余。