0%

Problem 774


Problem 774


Conjunctive Sequences

$\&$ denote the bitwise AND operation.

For example, $10\ \&\ 12 = 1010_2\ \&\ 1100_2 = 1000_2 = 8$.

We shall call a finite sequence of non-negative integers $(a_1, a_2, \ldots, a_n)$ conjunctive if $a_i\ \&\ a_{i+1} \neq 0$ for all $i=1\ldots n-1$.

Define $c(n,b)$ to be the number of conjunctive sequences of length $n$ in which all terms are $\le b$.

You are given that $c(3,4)=18$, $c(10,6)=2496120$, and $c(100,200) \equiv 268159379 \pmod {998244353}$.

Find $c(123,123456789)$. Give your answer modulo $998244353$.


合取数列

$\&$表示按位与操作。

例如,$10\ \&\ 12 = 1010_2\ \&\ 1100_2 = 1000_2 = 8$。

若有限非负整数列$(a_1, a_2, \ldots, a_n)$满足,对所有$i=1\ldots n-1$均有$a_i\ \&\ a_{i+1} \neq 0$,则称之为合取数列。

记$c(n,b)$为所有长度为$n$且各项均$\le b$的合取数列的数目。

已知$c(3,4)=18$,$c(10,6)=2496120$,以及$c(100,200) \equiv 268159379 \pmod {998244353}$。

求$c(123,123456789)$,并将你的答案对$998244353$取余。