Problem 779
Prime Factor and Exponent
For a positive integer $n>1$, let $p(n)$ be the smallest prime dividing $n$, and let $\alpha(n)$ be its p-adic order, i.e. the largest integer such that $p(n)^{\alpha(n)}$ divides $n$.
For a positive integer $K$, define the function $f_K(n)$ by:
$$\displaystyle f_K(n)=\frac{\alpha(n)-1}{(p(n))^K}$$
Also define $\overline{f_K}$ by:
$$\displaystyle \overline{f_K}=\lim_{N \to \infty} \frac{1}{N}\sum_{n=2}^{N} f_K(n)$$
It can be verified that $\overline{f_1} \approx 0.282419756159$.
Find $\displaystyle \sum_{K=1}^{\infty}\overline{f_K}$. Give your answer rounded to $12$ digits after the decimal point.
质因数及其指数
对于正整数$n>1$,记$p(n)$为整除$n$的最小质数,并记$\alpha(n)$为$n$的p进数,也即使得$p(n)^{\alpha(n)}$整除$n$的最大整数。
对于正整数$K$,定义函数$f_K(n)$为:
$$\displaystyle f_K(n)=\frac{\alpha(n)-1}{(p(n))^K}$$
再定义$\overline{f_K}$为:
$$\displaystyle \overline{f_K}=\lim_{N \to \infty} \frac{1}{N}\sum_{n=2}^{N} f_K(n)$$
可以验证,$\overline{f_1} \approx 0.282419756159$。
求$\displaystyle \sum_{K=1}^{\infty}\overline{f_K}$,并将你的答案保留$12$位小数。