Problem 785
Symmetric Diophantine equation
Consider the following Diophantine equation:
$$15 (x^2 + y^2 + z^2) = 34 (xy + yz + zx)$$
where $x$, $y$ and $z$ are positive integers.
Let $S(N)$ be the sum of all solutions, $(x,y,z)$, of this equation such that, $1 \le x \le y \le z \le N$ and $\gcd(x, y, z) = 1$.
For $N = 10^2$, there are three such solutions - $(1, 7, 16), (8, 9, 39), (11, 21, 72)$. So $S(10^2) = 184$.
Find $S(10^9)$.
对称丢番图方程
考虑如下丢番图方程:
$$15 (x^2 + y^2 + z^2) = 34 (xy + yz + zx)$$
其中$x$、$y$、$z$均为正整数。
对于上述方程满足$1 \le x \le y \le z \le N$和$\gcd(x, y, z) = 1$的解$(x,y,z)$,记$S(N)$为所有这些解之和。
对于$N = 10^2$,共有三组这样的解:$(1, 7, 16), (8, 9, 39), (11, 21, 72)$,因此$S(10^2) = 184$。
求$S(10^9)$。