0%

Problem 786


Problem 786


Billiard

The following diagram shows a billiard table of a special quadrilateral shape. The four angles $A, B, C, D$ are $120^\circ, 90^\circ, 60^\circ, 90^\circ$ respectively, and the lengths $AB$ and $AD$ are equal.

The diagram on the left shows the trace of an infinitesimally small billiard ball, departing from point $A$, bouncing twice on the edges of the table, and finally returning back to point $A$. The diagram on the right shows another such trace, but this time bouncing eight times:

The table has no friction and all bounces are perfect elastic collisions.
Note that no bounce should happen on any of the corners, as the behaviour would be unpredictable.

Let $B(N)$ be the number of possible traces of the ball, departing from point $A$, bouncing at most $N$ times on the edges and returning back to point $A$.

For example, $B(10) = 6$, $B(100) = 478$, $B(1000) = 45790$.

Find $B(10^9)$.


台球

下图展示了一张特别的四边形台球桌。其四个角$A, B, C, D$分别为$120^\circ, 90^\circ, 60^\circ, 90^\circ$,且边$AB$和$AD$等长。

下图左侧展示了由$A$点出发的一颗任意小的台球,沿桌边反弹两次后回到$A$点的路径。下图右侧则展示了另一条从$A$点出发反弹八次回到起点的路径。

假设桌面没有摩擦,且每次反弹均是完美碰撞。
注意反弹不能发生在任意一个角上,因为此时台球的运动行为将会无法预测。

记$B(N)$为台球从$A$点出发,反弹至多$N$次后返回$A$点的所有可能的路径数目。

例如,$B(10) = 6$,$B(100) = 478$,$B(1000) = 45790$。

求$B(10^9)$。