0%

Problem 786


Problem 786


Billiard

The following diagram shows a billiard table of a special quadrilateral shape. The four angles A,B,C,D are 120,90,60,90 respectively, and the lengths AB and AD are equal.

The diagram on the left shows the trace of an infinitesimally small billiard ball, departing from point A, bouncing twice on the edges of the table, and finally returning back to point A. The diagram on the right shows another such trace, but this time bouncing eight times:

The table has no friction and all bounces are perfect elastic collisions.
Note that no bounce should happen on any of the corners, as the behaviour would be unpredictable.

Let B(N) be the number of possible traces of the ball, departing from point A, bouncing at most N times on the edges and returning back to point A.

For example, B(10)=6, B(100)=478, B(1000)=45790.

Find B(109).


台球

下图展示了一张特别的四边形台球桌。其四个角A,B,C,D分别为120,90,60,90,且边ABAD等长。

下图左侧展示了由A点出发的一颗任意小的台球,沿桌边反弹两次后回到A点的路径。下图右侧则展示了另一条从A点出发反弹八次回到起点的路径。

假设桌面没有摩擦,且每次反弹均是完美碰撞。
注意反弹不能发生在任意一个角上,因为此时台球的运动行为将会无法预测。

B(N)为台球从A点出发,反弹至多N次后返回A点的所有可能的路径数目。

例如,B(10)=6B(100)=478B(1000)=45790

B(109)


Gitalking ...