Problem 798
Card Stacking Game
Two players play a game with a deck of cards which contains $s$ suits with each suit containing $n$ cards numbered from $1$ to $n$.
Before the game starts, a set of cards (which may be empty) is picked from the deck and placed face-up on the table, with no overlap. These are called the visible cards.
The players then make moves in turn.
A move consists of choosing a card X from the rest of the deck and placing it face-up on top of a visible card Y, subject to the following restrictions:
- X and Y must be the same suit;
- the value of X must be larger than the value of Y.
The card X then covers the card Y and replaces Y as a visible card.
The player unable to make a valid move loses and play stops.
Let $C(n, s)$ be the number of different initial sets of cards for which the first player will lose given best play for both players.
For example, $C(3, 2) = 26$ and $C(13, 4) \equiv 540318329 \pmod {1\ 000\ 000\ 007}$.
Find $C(10^7, 10^7)$. Give your answer modulo $1\ 000\ 000\ 007$.
叠卡游戏
两位玩家正在玩一个游戏,这个游戏需要用到一副有$n$个花色、每个花色包含$1$到$n$共$n$种点数的牌。
在游戏开始前,从这副牌中拿出一部分(可以不拿),并将其面朝上互不接触地放在桌面上。这些牌被称为可见牌。
此后,两名玩家轮流行动。每一轮行动,玩家必须从剩下的牌中选择一张牌X,并将其面朝上放在一张可见牌Y上,且X和Y需要满足:
- X和Y的花色必须相同;
- X的点数必须大于Y的点数。
X会完全覆盖Y并取代Y成为可见牌。
首先无法进行合法行动的玩家失败,游戏结束。
若两位玩家均采取最优策略,记$C(n, s)$为先手玩家必败的可见牌布置局面的数目。
例如,$C(3, 2) = 26$,$C(13, 4) \equiv 540318329 \pmod {1\ 000\ 000\ 007}$。
求$C(10^7, 10^7)$,并将你的答案对$1\ 000\ 000\ 007$取余。