Problem 800
Hybrid Integers
An integer of the form $p^q q^p$ with prime numbers $p \neq q$ is called a hybrid-integer.
For example, $800 = 2^5 5^2$ is a hybrid-integer.
We define $C(n)$ to be the number of hybrid-integers less than or equal to $n$.
You are given $C(800) = 2$ and $C(800^{800}) = 10790$.
Find $C(800800^{800800})$.
混合整数
若一个整数可以表示为$p^q q^p$的形式,且$p \neq q$均为质数,则称其为混合整数。
例如,$800 = 2^5 5^2$是一个混合整数。
定义$C(n)$为小于等于$n$的所有混合整数之和。
已知$C(800) = 2$和$C(800^{800}) = 10790$。
求$C(800800^{800800})$。