Problem 801
$x^y\equiv y^x$
The positive integral solutions of the equation $x^y=y^x$ are $(2,4)$, $(4,2)$ and $(k,k)$ for all $k>0$.
For a given positive integer $n$, let $f(n)$ be the number of integral values $0<x,y \le n^2-n$ such that
$$x^y\equiv y^x \pmod n$$
For example, $f(5)=104$ and $f(97)=1614336$.
Let $S(M,N)=\sum f(p)$ where the sum is taken over all primes $p$ satisfying $M\le p\le N$.
You are given $S(1,10^2)=7381000$ and $S(1,10^5) \equiv 701331986 \pmod{993353399}$.
Find $S(10^{16}, 10^{16}+10^6)$. Give your answer modulo $993353399$.
$x^y\equiv y^x$
方程$x^y=y^x$的正整数解有$(2,4)$、$(4,2)$和满足$k>0$的任意$(k,k)$。
对于给定的正整数$n$,记$f(n)$为下列同余方程满足$0<x,y \le n^2-n$的正整数解的数目:
$$x^y\equiv y^x \pmod n$$
例如,$f(5)=104$,$f(97)=1614336$。
对于所有满足$M\le p\le N$的质数$p$,记$S(M,N)=\sum f(p)$。
已知$S(1,10^2)=7381000$,$S(1,10^5) \equiv 701331986 \pmod{993353399}$。
求$S(10^{16}, 10^{16}+10^6)$,并将你的答案对$993353399$取余。