Problem 807
Loops of Ropes
Given a circle $C$ and an integer $n > 1$, we perform the following operations.
In step $0$, we choose two uniformly random points $R_0$ and $B_0$ on $C$.
In step $i$ ($1 \leq i < n$), we first choose a uniformly random point $R_i$ on $C$ and connect the points $R_{i - 1}$ and $R_i$ with a red rope; then choose a uniformly random point $B_i$ on $C$ and connect the points $B_{i - 1}$ and $B_i$ with a blue rope.
In step $n$, we first connect the points $R_{n - 1}$ and $R_0$ with a red rope; then connect the points $B_{n - 1}$ and $B_0$ with a blue rope.
Each rope is straight between its two end points, and lies above all previous ropes.
After step $n$, we get a loop of red ropes, and a loop of blue ropes.
Sometimes the two loops can be separated, as in the left figure below; sometimes they are “linked”, hence cannot be separated, as in the middle and right figures below.
Let $P(n)$ be the probability that the two loops can be separated.
For example, $P(3) = \frac{11}{20}$ and $P(5) \approx 0.4304177690$.
Find $P(80)$, rounded to $10$ digits after decimal point.
绳环
考虑圆$C$和整数$n>1$,我们进行如下操作。
在第$0$步,我们在圆$C$上均匀随机地选择两个点$R_0$和$B_0$。
在第$i$步($1 \leq i < n$), 我们先在圆$C$上均匀随机地选择一个点$R_i$并将点$R_{i-1}$和点$R_i$用红绳连接,再在圆$C$上均匀随机地选择一个点$B_i$,并将点$B_{i-1}$和点$B_i$用蓝绳连接。
在第$n$步,我们先将点$R_{n-1}$和点$R_0$用红绳连接,再将点$B_{n-1}$和点$B_0$用蓝绳连接。
每条绳在其连接的端点之间都是直线,且都位于所有现有绳的上方。
在完成第$n$步之后,我们得到了一个红绳环和一个蓝绳环。
有时这两个绳环可以拆开,如下图左所示。有时这两个绳环相互缠绕,无法拆开,如下图中和下图右所示。
记$P(n)$为两个绳环可以拆开的概率。
例如,$P(3) = \frac{11}{20}$,$P(5) \approx 0.4304177690$。
求$P(80)$,并将你的答案保留小数点后$10$位。