Problem 809
Rational Recurrence Relation
The following is a function defined for all positive rational values of $x$.
$$ f(x)=\begin{cases} x & x\text{ is integral}\\
f(\frac 1{1-x}) & x \lt 1\\
f\Big(\frac 1{\lceil x\rceil -x}-1+f(x-1)\Big) & \text{otherwise}\end{cases} $$
For example, $f(3/2)=3$, $f(1/6) = 65533$ and $f(13/10) = 7625597484985$.
Find $f(22/7)$. Give your answer modulo $10^{15}$.
有理数递归关系式
如下是定义在所有正有理数$x$上的函数:
$$ f(x)=\begin{cases} x & \text{若}x\text{是整数}\\
f(\frac 1{1-x}) & \text{若}x \lt 1\\
f\Big(\frac 1{\lceil x\rceil -x}-1+f(x-1)\Big) & \text{其余情况}\end{cases} $$
例如,$f(3/2)=3$,$f(1/6) = 65533$,$f(13/10) = 7625597484985$。
求$f(22/7)$,并将你的答案对$10^{15}$取余。