Problem 811
Bitwise Recursion
Let $b(n)$ be the largest power of $2$ that divides $n$. For example $b(24) = 8$.
Define the recursive function:
\begin{aligned}
\begin{split}
A(0) & = 1\\
A(2n) & = 3A(n) + 5A\big(2n - b(n)\big) \qquad n \gt 0\\
A(2n+1) & = A(n)
\end{split}
\end{aligned}
and let $H(t,r) = A\big((2^t+1)^r\big)$.
You are given $H(3,2) = A(81) = 636056$.
Find $H(10^{14}+31,62)$. Give your answer modulo $1\ 000\ 062\ 031$.
按位递归
记$b(n)$为最大的整除$n$的$2$的幂,例如$b(24) = 8$。
定义如下递归关系式:
\begin{aligned}
\begin{split}
A(0) & = 1\\
A(2n) & = 3A(n) + 5A\big(2n - b(n)\big) \qquad n \gt 0\\
A(2n+1) & = A(n)
\end{split}
\end{aligned}
并记$H(t,r) = A\big((2^t+1)^r\big)$。
已知$H(3,2) = A(81) = 636056$。
求$H(10^{14}+31,62)$,并将你的答案对$1\ 000\ 062\ 031$取余。