Problem 816
Shortest distance among points
We create an array of points $P_n$ in a two dimensional plane using the following random number generator:
$s_0=290797$
$s_{n+1}=s_n^2 \bmod 50515093$
$P_n=(s_{2n},s_{2n+1})$
Let $d(k)$ be the shortest distance of any two (distinct) points among $P_0, \cdots, P_{k - 1}$.
E.g. $d(14)=546446.466846479$
Find $d(2000000)$. Give your answer rounded to $9$ places after the decimal point.
随机点集最短距离
使用下列随机数生成器生成二维随机点列$P_n$:
$s_0=290797$
$s_{n+1}=s_n^2 \bmod 50515093$
$P_n=(s_{2n},s_{2n+1})$
记$d(k)$为$P_0, \cdots, P_{k - 1}$中任意(不同的)两点间最短距离。
已知$d(14)=546446.466846479$。
求$d(2000000)$,并将你的答案四舍五入至小数点后$9$位。