0%

Problem 820


Problem 820


$N$th digit of Reciprocals

Let $d_n(x)$ be the $n$th decimal digit of the fractional part of $x$, or $0$ if the fractional part has fewer than $n$ digits.

For example:

  • $d_7 \left( 1 \right) = d_7 \left( \frac 1 2 \right) = d_7 \left( \frac 1 4 \right) = d_7 \left( \frac 1 5 \right) = 0$
  • $d_7 \left( \frac 1 3 \right) = 3$ since $\frac 1 3 = 0.333333{\color{red}3}333\ldots$
  • $d_7 \left( \frac 1 6 \right) = 6$ since $\frac 1 6 = 0.166666{\color{red}6}666\ldots$
  • $d_7 \left( \frac 1 7 \right) = 1$ since $\frac 1 7 = 0.142857{\color{red}1}428\ldots$

Let $\displaystyle S(n) = \sum_{k=1}^n d_n \left( \frac 1 k \right)$.

You are given:

  • $S(7) = 0 + 0 + 3 + 0 + 0 + 6 + 1 = 10$
  • $S(100) = 418$

Find $S(10^7)$.


倒数的第$N$位数字

记$d_n(x)$为$x$的小数点后第$n$位数字;若其小数部分不满$n$位则记为$0$。

例如:

  • $d_7 \left( 1 \right) = d_7 \left( \frac 1 2 \right) = d_7 \left( \frac 1 4 \right) = d_7 \left( \frac 1 5 \right) = 0$
  • $d_7 \left( \frac 1 3 \right) = 3$,因为$\frac 1 3 = 0.333333{\color{red}3}333\ldots$
  • $d_7 \left( \frac 1 6 \right) = 6$,因为$\frac 1 6 = 0.166666{\color{red}6}666\ldots$
  • $d_7 \left( \frac 1 7 \right) = 1$,因为$\frac 1 7 = 0.142857{\color{red}1}428\ldots$

记$\displaystyle S(n) = \sum_{k=1}^n d_n \left( \frac 1 k \right)$。

已知:

  • $S(7) = 0 + 0 + 3 + 0 + 0 + 6 + 1 = 10$
  • $S(100) = 418$

求$S(10^7)$。