Problem 823
Factor Shuffle
A list initially contains the numbers $2, 3, \dots, n$.
At each round, every number in the list is divided by its smallest prime factor. Then the product of these smallest prime factors is added to the list as a new number. Finally, all numbers that become $1$ are removed from the list.
For example, below are the first three rounds for $n = 5$:
$$[2, 3, 4, 5] \xrightarrow{(1)} [2, 60] \xrightarrow{(2)} [30, 4] \xrightarrow{(3)} [15, 2, 4].$$
Let $S(n, m)$ be the sum of all numbers in the list after $m$ rounds.
For example, $S(5, 3) = 15 + 2 + 4 = 21$. Also $S(10, 100) = 257$.
Find $S(10^4, 10^{16})$. Give your answer modulo $1234567891$.
因数重排
考虑初始数列$2, 3, \dots, n$。
在每一轮中,将数列中的每个数都除以其最小的质因数,再将这些质因数的乘积加入数列,最后将所有的$1$从数列中移除。
例如,当$n=5$时,前三轮的操作如下:
$$[2, 3, 4, 5] \xrightarrow{(1)} [2, 60] \xrightarrow{(2)} [30, 4] \xrightarrow{(3)} [15, 2, 4]$$
记$S(n, m)$为进行$m$轮后数列中所有数之和。
例如,$S(5, 3) = 15 + 2 + 4 = 21$。已知$S(10, 100) = 257$。
求$S(10^4, 10^{16})$,并将你的答案对$1234567891$取余。