0%

Problem 824


Problem 824


Chess Sliders

A Slider is a chess piece that can move one square left or right.

This problem uses a cylindrical chess board where the left hand edge of the board is connected to the right hand edge. This means that a Slider that is on the left hand edge of the chess board can move to the right hand edge of the same row and vice versa.

Let $L(N,K)$ be the number of ways $K$ non-attacking Sliders can be placed on an $N \times N$ cylindrical chess-board.

For example, $L(2,2)=4$ and $L(6,12)=4204761$.

Find $L(10^9,10^{15}) \bmod \left(10^7+19\right)^2$.


滑块

有一种新的国际象棋棋子滑块,每次可以向左或向右移动一格。

考虑一个圆柱形棋盘,其左侧边界和右侧边界相连。也就是说,一个位于棋盘最左侧的滑块可以移动一步到达同一行的最右侧,反之亦然。

记$L(N,K)$为在$N \times N$的圆柱形棋盘上摆放$K$个互不攻击的滑块的方案数。

例如,$L(2,2)=4$,$L(6,12)=4204761$。

求$L(10^9,10^{15}) \bmod \left(10^7+19\right)^2$。