Problem 833
Square Triangle Products
Triangle numbers $T_k$ are integers of the form $k(k+1)/2$.
A few triangle numbers happen to be perfect squares like $T_1=1$ and $T_8=36$, but more can be found when considering the product of two triangle numbers. For example, $T_2 \cdot T_{24}=3 \cdot 300=30^2$.
Let $S(n)$ be the sum of $c$ for all integers triples $(a, b, c)$ with $0\lt c \le n$, $c^2=T_a \cdot T_b$ and $0<a<b$. For example, $S(100)= \sqrt{T_1 T_8}+\sqrt{T_2 T_{24}}+\sqrt{T_1 T_{49}}+\sqrt{T_3 T_{48}}=6+30+35+84=155$.
You are given $S(10^5)=1479802$ and $S(10^9)=241614948794$.
Find $S(10^{35})$. Give your answer modulo $136101521$.
恰为平方数的三角形数乘积
三角形数$T_k$是指能表达为$k(k+1)/2$的整数。
有些三角形数恰好就是完全平方数,比如$T_1=1$和$T_8=36$。如果考虑两个三角形数的乘积,那么可以找到更多的完全平方数。例如,$T_2 \cdot T_{24}=3 \cdot 300=30^2$。
考虑所有同时满足$0 \lt c \le n$、$c^2=T_a \cdot T_b$和$0<a<b$的整数三元组$(a,b,c)$,并记$S(n)$为所有此类三元组中整数$c$之和。例如,$S(100)= \sqrt{T_1 T_8}+\sqrt{T_2 T_{24}}+\sqrt{T_1 T_{49}}+\sqrt{T_3 T_{48}}=6+30+35+84=155$。
已知$S(10^5)=1479802$,$S(10^9)=241614948794$。
求$S(10^{35})$,并将你的答案对$136101521$取余。