Problem 836
A Bold Proposition
Let $A$ be an affine plane over a radically integral local field $F$ with residual characteristic $p$.
We consider an open oriented line section $U$ of $A$ with normalized Haar measure $m$.
Define $f(m, p)$ as the maximal possible discriminant of the jacobian associated to the orthogonal kernel embedding of $U$ into $A$.
Find $f(20230401, 57)$. Give as your answer the concatenation of the first letters of each bolded word.
加粗的命题
考虑仿射平面(affine plane)$A$,定义在根式积分局部域(radically integral local field)$F$上,其剩余特征值为$p$。
考虑$A$的一个开有向直线截面(open oriented line section)$U$,其正规化哈尔测度为$m$。
定义$f(m, p)$为特定雅各比矩阵(jacobian)的判别式的最大值,该矩阵对应于$U$对$A$的正交核嵌入(orthogonal kernel embedding)。
求$f(20230401, 57)$,并将本文中所有加粗单词的首字母连起来作为你的答案。
译注:愚人节快乐!