Problem 842
Irregular Star Polygons
Given $n$ equally spaced points on a circle, we define an $n$-star polygon as an $n$-gon having those $n$ points as vertices. Two $n$-star polygons differing by a rotation/reflection are considered different.
For example, there are twelve $5$-star polygons shown below.
For an $n$-star polygon $S$, let $I(S)$ be the number of its self intersection points.
Let $T(n)$ be the sum of $I(S)$ over all $n$-star polygons $S$.
For the example above $T(5) = 20$ because in total there are $20$ self intersection points.
Some star polygons may have intersection points made from more than two lines. These are only counted once. For example, $S$, shown below is one of the sixty $6$-star polygons. This one has $I(S) = 4$.
You are also given that $T(8) = 14640$.
Find $\displaystyle \sum_{n = 3}^{60}T(n)$. Give your answer modulo $(10^9 + 7)$.
不规则星形多边形
在圆上取$n$个等距离的点,称以这$n$个点为顶点的$n$边形为$n$星多边形。若两个$n$星多边形可以通过旋转或翻折重合,仍视为不同的$n$星多边形。
例如,共有十二个不同的$5$星多边形,如下图所示:
对于任意$n$星多边形$S$,记$I(S)$为其各边自交产生的交点数目。
记$T(n)$为所有$n$星多边形$S$对应的$I(S)$之和。
如上图所示,$T(5) = 20$,因为所有$5$星多边形各边自交共产生$20$个交点。
有些交点可能由多条边同时相交产生,这样的交点只被计算一次。例如,下图所示是六十种$6$星多边形的其中之一,其对应的$I(S)=4$。
已知$T(8) = 14640$。
求$\displaystyle \sum_{n = 3}^{60}T(n)$,并将你的答案对$(10^9 + 7)$取余。