Problem 844
$k$-Markov Numbers
Consider positive integer solutions to
$$a^2+b^2+c^2 = 3abc$$
For example, $(1,5,13)$ is a solution. We define a $3$-Markov number to be any part of a solution, so $1$, $5$ and $13$ are all $3$-Markov numbers. Adding distinct $3$-Markov numbers $\le 10^3$ would give $2797$.
Now we define a $k$-Markov number to be a positive integer that is part of a solution to:
$$\displaystyle \sum_{i=1}^{k}x_i^2=k\prod_{i=1}^{k}x_i,\quad x_i\text{ are positive integers}$$
Let $M_k(N)$ be the sum of $k$-Markov numbers $\le N$. Hence $M_3(10^{3})=2797$, also $M_8(10^8) = 131493335$.
Define $\displaystyle S(K,N)=\sum_{k=3}^{K}M_k(N)$. You are given $S(4, 10^2)=229$ and $S(10, 10^8)=2383369980$.
Find $S(10^{18}, 10^{18})$. Give your answer modulo $1\ 405\ 695\ 061$.
$k$-马尔科夫数
考虑如下方程的正整数解:
$$a^2+b^2+c^2 = 3abc$$
例如,其中一组解是$(1,5,13)$。定义$3$-马尔科夫数为上述解中的任意一个数,因此$1$、$5$和$13$都是$3$-马尔科夫数。
所有不同的、小于等于$10^3$的$3$-马尔科夫数之和为$2797$。
进一步定义$k$-马尔科夫数为下列方程的解中的任意一个数:
$$\displaystyle \sum_{i=1}^{k}x_i^2=k\prod_{i=1}^{k}x_i,\quad x_i\text{为正整数}$$
记$M_k(N)$为所有小于等于$N$的$k$-马尔科夫数之和。因此,$M_3(10^{3})=2797$,$M_8(10^8) = 131493335$。
定义$\displaystyle S(K,N)=\sum_{k=3}^{K}M_k(N)$。已知$S(4, 10^2)=229$,$S(10, 10^8)=2383369980$。
求$S(10^{18}, 10^{18})$,并将你的答案对$1\ 405\ 695\ 061$取余。