Problem 847
Jack’s Bean
Jack has three plates in front of him. The giant has $N$ beans that he distributes to the three plates. All the beans look the same, but one of them is a magic bean. Jack doesn’t know which one it is, but the giant knows.
Jack can ask the giant questions of the form: “Does this subset of the beans contain the magic bean?” In each question Jack may choose any subset of beans from a single plate, and the giant will respond truthfully.
If the three plates contain $a$, $b$ and $c$ beans respectively, we let $h(a, b, c)$ be the minimal number of questions Jack needs to ask in order to guarantee he locates the magic bean. For example, $h(1, 2, 3) = 3$ and $h(2, 3, 3) = 4$.
Let $H(N)$ be the sum of $h(a, b, c)$ over all triples of non-negative integers $a$, $b$, $c$ with $1 \leq a + b + c \leq N$.
You are given: $H(6) = 203$ and $H(20) = 7718$.
A repunit, $R_n$, is a number made up with $n$ digits all ‘$1$’. For example, $R_3 = 111$ and $H(R_3) = 1634144$.
Find $H(R_{19})$. Give your answer modulo $1\ 000\ 000\ 007$.
杰克的魔法豆子
杰克面前有三个盘子,巨人将$N$颗豆子分在三个盘子中。这些豆子看起来都一样,但其中有一颗是魔法豆子。杰克不知道哪一颗才是魔法豆子,但巨人知道。
杰克可以从任意一个盘子中选择任意一部分豆子,并向巨人提问:“在这些豆子中有魔法豆子吗?”巨人总是如实回答。
若三个盘子中分别由$a$、$b$、$c$颗豆子,记$h(a, b, c)$为杰克能够保证找到魔法豆子最少需要提问的次数。例如,$h(1, 2, 3) = 3$,$h(2, 3, 3) = 4$。
记$H(N)$为所有满足$1\le a+b+c \le N$的非负整数三元组$a$、$b$、$c$对应的$h(a,b,c)$之和。
已知:$H(6) = 203$,$H(20) = 7718$。
循环单位数$R_n$是指由$n$个数字$1$组成的数。例如,$R_3 = 111$,$H(R_3) = 1634144$。
求$H(R_{19})$,并将你的答案对$1\ 000\ 000\ 007$取余。