Problem 857
Beautiful Graphs
A graph is made up of vertices and coloured edges. Between every two distinct vertices there must be exactly one of the following:
- A red directed edge one way, and a blue directed edge the other way
- A green undirected edge
- A brown undirected edge
Such a graph is called beautiful if
- A cycle of edges contains a red edge if and only if it also contains a blue edge
- No triangle of edges is made up of entirely green or entirely brown edges
Below are four distinct examples of beautiful graphs on three vertices:
Below are four examples of graphs that are not beautiful:
Let $G(n)$ be the number of beautiful graphs on the labelled vertices: $1,2,\ldots,n$. You are given $G(3)=24$, $G(4)=186$ and $G(15)=12472315010483328$.
Find $G(10^7)$. Give your answer modulo $10^9+7$.
美丽图
考虑由顶点和染色的边构成的图,任意两个顶点间必由以下三种情况之一相连:
- 一条红色的有向边和一条蓝色的有向边,两者方向相反
- 一条绿色的无向边
- 一条棕色的无向边
若进一步满足以下条件,则称之为美丽图:
- 任意环包含红色边当且仅当它也包含蓝色边
- 不存在仅由绿色边或仅由棕色边构成的三角形
如下所示的四张图均为包含三个顶点的美丽图:
如下所示的四张图均不是美丽图:
将顶点依次编号为$1,2,\ldots,n$,记$G(n)$为所有构造在这些顶点上的美丽图的数目。已知$G(3)=24$,$G(4)=186$,$G(15)=12472315010483328$。
求$G(10^7)$,并对$10^9+7$取余作为你的答案。