Problem 867
Tiling Dodecagon
There are $5$ ways to tile a regular dodecagon of side $1$ with regular polygons of side $1$.
Let $T(n)$ be the number of ways to tile a regular dodecagon of side $n$ with regular polygons of side 1. Then $T(1) = 5$. You are also given $T(2) = 48$.
Find $T(10)$. Give your answer modulo $10^9+7$.
密铺十二边形
用边长为$1$的正多边形铺满边长为$1$的正十二边形,有$5$种不同的方案:
记$T(n)$为用边长为$1$的正多边形铺满边长为$n$的正十二边形的方案数,因此$T(1) = 5$,而$T(2) = 48$。
求$T(10)$,并对$10^9+7$取余作为你的答案。