Problem 870
Stone Game IV
Two players play a game with a single pile of stones of initial size $n$. They take stones from the pile in turn, according to the following rules which depend on a fixed real number $r>0$:
- In the first turn, the first player may take $k$ stones with $1 \le k < n$.
- If a player takes $m$ stones in a turn, then in the next turn the opponent may take $k$ stones with $1 \le k \le \lfloor r \cdot m \rfloor$.
Whoever cannot make a legal move loses the game.
Let $L(r)$ be the set of initial pile sizes $n$ for which the second player has a winning strategy. For example, $L(0.5) = \{1\}$, $L(1) = \{1, 2, 4, 8, 16, \dots\}$, $L(2) = \{1, 2, 3, 5, 8, \dots\}$.
A real number $q > 0$ is a transition value if $L(s)$ is different from $L(t)$ for all $s < q < t$.
Let $T(i)$ be the $i$-th transition value. For example, $T(1) = 1$, $T(2) = 2$, $T(22) \approx 6.3043478261$.
Find $T(123456)$ and give your answer rounded to $10$ digits after the decimal point.
取石子游戏(四)
两位玩家正在玩一个游戏,游戏开始时有一堆共$n$枚石子。两位玩家轮流从堆中取走石子,但必须遵循以下基于固定实数$r>0$的规则:
- 在第一轮中,先手玩家可以取走的石子数$k$需满足$1 \le k < n$。
- 如果一名玩家在某一轮取走$m$枚石子,则下一轮其对手可以取走的石子数$k$需满足$1 \le k \le \lfloor r \cdot m \rfloor$。
首先无法行动的玩家输掉游戏。
记$L(r)$为使得后手玩家有必胜策略的石子数$n$所构成的集合。例如,$L(0.5) = \{1\}$,$L(1) = \{1, 2, 4, 8, 16, \dots\}$,$L(2) = \{1, 2, 3, 5, 8, \dots\}$。
考虑实数$q>0$,若对于任意$s < q < t$均满足$L(s)$不等于$L(t)$,则称其为过渡值。
记$T(i)$为第$i$个过渡值。例如,$T(1) = 1$,$T(2) = 2$,$T(22) \approx 6.3043478261$。
求$T(123456)$,并四舍五入保留$10$位小数作为你的答案。
译注:“取石子游戏(三)”参见第366题。