Problem 883
Remarkable Triangles
In this problem we consider triangles drawn on a hexagonal lattice, where each lattice point in the plane has six neighbouring points equally spaced around it, all distance $1$ away.
We call a triangle remarkable if
- All three vertices and its incentre lie on lattice points
- At least one of its angles is $60^\circ$
Above are four examples of remarkable triangles, with $60^\circ$ angles illustrated in red. Triangles A and B have inradius $1$; C has inradius $\sqrt{3}$; D has inradius $2$.
Define $T(r)$ to be the number of remarkable triangles with inradius $\le r$. Rotations and reflections, such as triangles A and B above, are counted separately; however direct translations are not. That is, the same triangle drawn in different positions of the lattice is only counted once.
You are given $T(0.5)=2$, $T(2)=44$, and $T(10)=1302$.
Find $T(10^6)$.
卓越三角形
本题所考虑的三角形的顶点均在六边形格阵上。六边形格阵是平面上的一种格点阵,其中每个格点周围都有六个相邻的、均匀分布的格点,其距离均为$1$。
所谓卓越三角形是满足以下条件的三角形:
- 其三个顶点及其内心都落在格点上
- 至少一个角为$60^\circ$
如上所示是四个卓越三角形,其$60^\circ$的角被标记为红色。三角形A和B的内接圆半径为$1$,C的内接圆半径为$\sqrt{3}$,而D的内接圆半径为$2$。
记$T(r)$为所有内接圆半径小于等于$r$的卓越三角形的数目。旋转和翻转形成的不同三角形,如上图所示的三角形A和B,在计数时分别计算;而直接平移则不重复计算,也就是说,在格阵不同的位置绘制的完全相同的三角形只计算一次。
已知$T(0.5)=2$,$T(2)=44$,$T(10)=1302$。
求$T(10^6)$。