Problem 889
Rational Blancmange
Recall the blancmange function from Problem 226: $T(x) = \sum\limits_{n = 0}^\infty\dfrac{s(2^nx)}{2^n}$, where $s(x)$ is the distance from $x$ to the nearest integer.
For positive integers $k, t, r$, we write
$$F(k, t, r) = (2^{2k} - 1)T\left(\frac{(2^t + 1)^r}{2^k + 1}\right).$$
It can be shown that $F(k, t, r)$ is always an integer.
For example, $F(3, 1, 1) = 42$, $F(13, 3, 3) = 23093880$ and $F(103, 13, 6) \equiv 878922518\pmod {1\ 000\ 062\ 031}$.
Find $F(10^{18} + 31, 10^{14} + 31, 62)$. Give your answer modulo $1\ 000\ 062\ 031$.
有理牛奶冻
考虑226题中提及的牛奶冻函数:$T(x) = \sum\limits_{n = 0}^\infty\dfrac{s(2^nx)}{2^n}$,其中$s(x)$是$x$到最近整数的距离。
对于正整数$k, t, r$,记:
$$F(k, t, r) = (2^{2k} - 1)T\left(\frac{(2^t + 1)^r}{2^k + 1}\right)$$
可以证明$F(k, t, r)$总是一个整数。
例如,$F(3, 1, 1) = 42$,$F(13, 3, 3) = 23093880$,$F(103, 13, 6) \equiv 878922518\pmod {1\ 000\ 062\ 031}$。
求$F(10^{18} + 31, 10^{14} + 31, 62)$,并对$1\ 000\ 062\ 031$取余作为你的答案。