Problem 896
Divisible Ranges
A contiguous range of positive integers is called a divisible range if all the integers in the range can be arranged in a row such that the $n$-th term is a multiple of $n$.
For example, the range $[6..9]$ is a divisible range because we can arrange the numbers as $7,6,9,8$.
In fact, it is the $4$th divisible range of length $4$, the first three being $[1..4], [2..5], [3..6]$.
Find the $36$th divisible range of length $36$.
Give as answer the smallest number in the range.
可整除区间
如果某个区间内的正整数可以经过重排使得第$n$项是$n$的倍数,则称之为可整除区间。
例如,区间$[6..9]$可以重排成$7,6,9,8$,因此它是一个可整除区间。
实际上,它是第$4$个长度为$4$的可整除区间,前三个分别是$[1..4]$,$[2..5]$,$[3..6]$。
求第$36$个长度为$36$的可整除区间。
给出该区间内的最小整数作为答案。