Problem 9
Special Pythagorean triplet
A Pythagorean triplet is a set of three natural numbers, $a<b<c$, for which,
$$a^2+b^2=c^2$$
For example, $3^2+4^2=9+16=25=5^2$.
There exists exactly one Pythagorean triplet for which $a + b + c = 1000$. Find the product $abc$.
特殊毕达哥拉斯三元组
毕达哥拉斯三元组由三个自然数$a<b<c$组成,并满足
$$a^2+b^2=c^2$$
例如,$3^2+4^2=9+16=25=5^2$。
有且只有一个毕达哥拉斯三元组满足 $a + b + c = 1000$。求这个三元组的乘积$abc$。