0%

Problem 900


Problem 900


DistribuNim II

Two players play a game with at least two piles of stones. The players alternately take stones from one or more piles, subject to:

  1. the total number of stones taken is equal to the size of the smallest pile before the move;
  2. the move cannot take all the stones from a pile.

The player that is unable to move loses.

For example, if the piles are of sizes $2$, $2$ and $4$ then there are four possible moves.
$$ (2,2,4)\xrightarrow{(1,1,0)}(1,1,4)\quad (2,2,4)\xrightarrow{(1,0,1)}(1,2,3)\quad
(2,2,4)\xrightarrow{(0,1,1)}(2,1,3)\quad (2,2,4)\xrightarrow{(0,0,2)}(2,2,2)$$

Let $t(n)$ be the smallest nonnegative integer $k$ such that the position with $n$ piles of $n$ stones and a single pile of $n+k$ stones is losing for the first player assuming optimal play. For example, $t(1) = t(2) = 0$ and $t(3) = 2$.

Define $\displaystyle S(N) = \sum_{n=1}^{2^N} t(n)$. You are given $S(10) = 361522$.

Find $S(10^4)$. Give your answer modulo $900497239$.


分布式取石子游戏(二)

两位玩家在玩一个游戏,游戏开始时有至少两堆石子,玩家轮流从一堆或多堆中取石子,并需遵守以下规则:

  1. 取走的石子总数等于行动前最小堆的石子数量;
  2. 不能将任何一堆的石子全部取完。

首先无法行动的玩家输掉游戏。

例如,如果堆的大小分别为$2$、$2$和$4$,则有四种可能的移动:
$$ (2,2,4)\xrightarrow{(1,1,0)}(1,1,4)\quad (2,2,4)\xrightarrow{(1,0,1)}(1,2,3)\quad
(2,2,4)\xrightarrow{(0,1,1)}(2,1,3)\quad (2,2,4)\xrightarrow{(0,0,2)}(2,2,2)$$

令$t(n)$为满足以下条件的最小非负整数$k$:假设双方都采用最优策略,若游戏开始时有$n$堆各$n$个石子和一堆$n+k$个石子,先手玩家必败。例如,$t(1) = t(2) = 0$,$t(3) = 2$。

定义$\displaystyle S(N) = \sum_{n=1}^{2^N} t(n)$。已知$S(10) = 361522$。

求$S(10^4)$,并对$900497239$取余作为你的答案。