Problem 906
A Collective Decision
Three friends attempt to collectively choose one of $n$ options, labeled $1,\dots,n$, based upon their individual preferences. They choose option $i$ if for every alternative option $j$ at least two of the three friends prefer $i$ over $j$. If no such option $i$ exists they fail to reach an agreement.
Define $P(n)$ to be the probability the three friends successfully reach an agreement and choose one option, where each of the friends’ individual order of preference is given by a (possibly different) random permutation of $1,\dots,n$.
You are given $P(3)=17/18$ and $P(10)\approx0.6760292265$.
Find $P(20\ 000)$. Give your answer rounded to ten places after the decimal point.
集体决定
三位朋友试图根据他们各自的偏好集体从$n$个选项中选择其中之一,这些选项分别用$1,\dots,n$表示。如果存在选项$i$使得,对于任意其他选项$j$,至少有两位朋友更喜欢选项$i$胜过选项$j$,那么他们就会选择选项$i$。如果不存在这样的选项$i$,他们就无法达成一致。
定义$P(n)$为三位朋友成功达成一致的概率,其中每位朋友的个人偏好可以由$1,\dots,n$的一个(可能不同的)随机排列表示。
已知$P(3)=17/18$,$P(10)\approx0.6760292265$。
求$P(20\ 000)$,并四舍五入保留十位小数作为你的答案。