Problem 915
Giant GCDs
The function $s(n)$ is defined recursively for positive integers by $s(1) = 1$ and $s(n+1) = \big(s(n) - 1\big)^3 +2$ for $n\geq 1$.
The sequence begins: $s(1) = 1, s(2) = 2, s(3) = 3, s(4) = 10, \ldots$.
For positive integers $N$, define
$$T(N) = \sum_{a=1}^N \sum_{b=1}^N \gcd\Big(s\big(s(a)\big), s\big(s(b)\big)\Big).$$
You are given $T(3) = 12$, $T(4) \equiv 24881925$ and $T(100)\equiv 14416749$ both modulo $123456789$.
Find $T(10^8)$. Give your answer modulo $123456789$.
超大的最大公约数
对正整数递归定义函数$s(n)$如下:$s(1) = 1$;对$n\geq 1$,$s(n+1) = \big(s(n) - 1\big)^3 +2$。
该序列的最初几项分别是:$s(1) = 1, s(2) = 2, s(3) = 3, s(4) = 10, \ldots$。
对正整数$N$,定义
$$T(N) = \sum_{a=1}^N \sum_{b=1}^N \gcd\Big(s\big(s(a)\big), s\big(s(b)\big)\Big).$$
已知$T(3) = 12$,$T(4) \equiv 24881925$,$T(100)\equiv 14416749$(对$123456789$取模)。
求$T(10^8)$,并对$123456789$取余作为你的答案。