Special Subset Sums: Optimum
Let represent the sum of elements in set of size . We shall call it a special sum set if for any two non-empty disjoint subsets, and , the following properties are true:
- ; that is, sums of subsets cannot be equal.
- If contains more elements than then .
If is minimised for a given , we shall call it an optimum special sum set. The first five optimum special sum sets are given below.
It seems that for a given optimum set, , the next optimum set is of the form , where is the “middle” element on the previous row.
By applying this “rule” we would expect the optimum set for to be , with . However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set. The optimum set for is , with and corresponding set string: .
Given that is an optimum special sum set for , find its set string.
NOTE: This problem is related to Problem 105 and Problem 106.
特殊的子集和:最优解
记是大小为的集合中所有元素的和。若从中任取两个非空且不相交的子集和始终满足下列条件,则称是一个特殊和集:
- ;也就是说,任意子集的和都不相同。
- 如果中的元素比多,则。
对于给定的,称使得最小的集合为最优特殊和集。前个最优特殊和集如下所示。
似乎对于一个给定的最优特殊和集,下一个最优特殊和集将是,其中是位于集合“中间”位置的元素。
应用这条“规则”,我们猜测对于的最优特殊和集将是,相应的。然而事实并非如此,上述“规则”仅仅只能给出近似最优解。对于,最优特殊和集是,其相应的,并可以表示为数字字符串:。
求时的最优特殊和集,并给出其数字字符串表示。
注意:此题和第105题及第106题有关。
Gitalking ...