0%

Problem 103


Problem 103


Special Subset Sums: Optimum

Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:

  1. S(B)S(C); that is, sums of subsets cannot be equal.
  2. If B contains more elements than C then S(B)>S(C).

If S(A) is minimised for a given n, we shall call it an optimum special sum set. The first five optimum special sum sets are given below.

n=1:{1}n=2:{1,2}n=3:{2,3,4}n=4:{3,5,6,7}n=5:{6,9,11,12,13}

It seems that for a given optimum set, A={a1,a2,,an}, the next optimum set is of the form B={b,a1+b,a2+b,,an+b}, where b is the “middle” element on the previous row.

By applying this “rule” we would expect the optimum set for n=6 to be A={11,17,20,22,23,24}, with S(A)=117. However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set. The optimum set for n=6 is A={11,18,19,20,22,25}, with S(A)=115 and corresponding set string: 111819202225.

Given that A is an optimum special sum set for n=7, find its set string.

NOTE: This problem is related to Problem 105 and Problem 106.


特殊的子集和:最优解

S(A)是大小为n的集合A中所有元素的和。若从A中任取两个非空且不相交的子集BC始终满足下列条件,则称A是一个特殊和集:

  1. S(B)S(C);也就是说,任意子集的和都不相同。
  2. 如果B中的元素比C多,则S(B)>S(C)

对于给定的n,称使得S(A)最小的集合A为最优特殊和集。前5个最优特殊和集如下所示。

n=1:{1}n=2:{1,2}n=3:{2,3,4}n=4:{3,5,6,7}n=5:{6,9,11,12,13}

似乎对于一个给定的最优特殊和集A={a1,a2,,an},下一个最优特殊和集将是B={b,a1+b,a2+b,,an+b},其中b是位于集合A“中间”位置的元素。

应用这条“规则”,我们猜测对于n=6的最优特殊和集将是A={11,17,20,22,23,24},相应的S(A)=117。然而事实并非如此,上述“规则”仅仅只能给出近似最优解。对于n=6,最优特殊和集是A={11,18,19,20,22,25},其相应的S(A)=115,并可以表示为数字字符串:111819202225

n=7时的最优特殊和集A,并给出其数字字符串表示。

注意:此题和第105题第106题有关。


Gitalking ...