0%

Problem 106


Problem 106


Special Subset Sums: Meta-Testing

Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:

  1. S(B)S(C); that is, sums of subsets cannot be equal.
  2. If B contains more elements than C then S(B)>S(C).

For this problem we shall assume that a given set contains n strictly increasing elements and it already satisfies the second rule.

Surprisingly, out of the 25 possible subset pairs that can be obtained from a set for which n=4, only 1 of these pairs need to be tested for equality (first rule). Similarly, when n=7, only 70 out of the 966 subset pairs need to be tested.

For n=12, how many of the 261625 subset pairs that can be obtained need to be tested for equality?

NOTE: This problem is related to Problem 103 and Problem 105.


特殊的子集和:元检验

S(A)是大小为n的集合A中所有元素的和。若任取A的任意两个非空且不相交的子集BC都满足下列条件,我们称A是一个特殊的和集:

  1. S(B)S(C);也就是说,任意子集的和不相同。
  2. 如果B中的元素比C多,则S(B)>S(C)

在这个问题中我们假定集合中包含有n个严格单调递增的元素,并且已知其满足第二个条件。

令人惊奇的是,当n=4时,在所有可能的25组子集对中只有1组需要检验子集和是否相等(第一个条件)。同样地,当n=7时,在所有可能的966组子集对中只有70组需要检验。

n=12时,在所有可能的261625组子集对中有多少组需要检验?

注意:此题和第103题第105题有关。


Gitalking ...