Let represent the sum of elements in set of size . We shall call it a special sum set if for any two non-empty disjoint subsets, and , the following properties are true:
- ; that is, sums of subsets cannot be equal.
- If contains more elements than then .
For this problem we shall assume that a given set contains strictly increasing elements and it already satisfies the second rule.
Surprisingly, out of the possible subset pairs that can be obtained from a set for which , only of these pairs need to be tested for equality (first rule). Similarly, when , only out of the subset pairs need to be tested.
For , how many of the subset pairs that can be obtained need to be tested for equality?
NOTE: This problem is related to Problem 103 and Problem 105.
特殊的子集和:元检验
记是大小为的集合中所有元素的和。若任取的任意两个非空且不相交的子集和都满足下列条件,我们称是一个特殊的和集:
- ;也就是说,任意子集的和不相同。
- 如果中的元素比多,则。
在这个问题中我们假定集合中包含有个严格单调递增的元素,并且已知其满足第二个条件。
令人惊奇的是,当时,在所有可能的组子集对中只有组需要检验子集和是否相等(第一个条件)。同样地,当时,在所有可能的组子集对中只有组需要检验。
当时,在所有可能的组子集对中有多少组需要检验?
注意:此题和第103题及第105题有关。
Gitalking ...