0%

Problem 21


Problem 21


Amicable Numbers

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).

If d(a)=b and d(b)=a, where ab, then a and b are an amicable pair and each of a and b are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220)=284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284)=220.

Evaluate the sum of all the amicable numbers under 10000.


亲和数

d(n)n的所有真约数(小于n且整除n的正整数)之和。

如果d(a)=bd(b)=a,而且ab,那么ab构成一个亲和数对,ab都被称为亲和数。

例如,220的真因数包括1245101120224455110,因此d(220)=284;而284的真因数包括12471142,因此d(284)=220

求所有小于10000的亲和数之和。


Gitalking ...