Palindromic sequences
Given an irrational number , let be the sequence for .
( is the floor-function.)
It can be proven that for any irrational there exist infinitely many values of such that the subsequence is palindromic.
The first values of that give a palindromic subsequence for are: , , , , , , , , , , , , , , , , , , , $647124734.
Let be the sum of the first values of for which the corresponding subsequence is palindromic.
So .
Let be the set of positive integers, not exceeding , excluding perfect squares.
Calculate the sum of for . Give the last digits of your answer.
回文序列
任取无理数,记为序列,其中。
(表示下取整函数。)
可以证明,对于任意无理数,存在无数个,使得子序列是回文的。
对于,前个满足上述条件的分别是:,,,,,,,,,,,,,,,,,,,。
记为前个满足上述条件的之和。
因此。
记为不超过且不包含完全平方数的正整数所组成的集合。
对于所有,求之和,并给出最后位数字作为你的答案。
Gitalking ...