0%

Problem 656


Problem 656


Palindromic sequences

Given an irrational number α, let Sα(n) be the sequence Sα(n)=αnα(n1) for n1.
( is the floor-function.)

It can be proven that for any irrational α there exist infinitely many values of n such that the subsequence Sα(1),Sα(2)Sα(n) is palindromic.

The first 20 values of n that give a palindromic subsequence for α=31 are: 1, 3, 5, 7, 44, 81, 118, 273, 3158, 9201, 15244, 21287, 133765, 246243, 358721, 829920, 9600319, 27971037, 46341755, $647124734.

Let Hg(α) be the sum of the first g values of n for which the corresponding subsequence is palindromic.
So H20(31)=150243655.

Let T=2,3,5,6,7,8,10,,1000 be the set of positive integers, not exceeding 1000, excluding perfect squares.
Calculate the sum of H100(β) for βT. Give the last 15 digits of your answer.


回文序列

任取无理数α,记Sα(n)为序列Sα(n)=αnα(n1),其中n1
表示下取整函数。)

可以证明,对于任意无理数α,存在无数个n,使得子序列Sα(1),Sα(2)Sα(n)是回文的。

对于α=31,前20个满足上述条件的n分别是:1357448111827331589201152442128713376524624335872182992096003192797103746341755647124734

Hg(α)为前g个满足上述条件的n之和。
因此H20(31)=150243655

T=2,3,5,6,7,8,10,,1000为不超过1000且不包含完全平方数的正整数所组成的集合。
对于所有βT,求H100(β)之和,并给出最后15位数字作为你的答案。


Gitalking ...