0%

Problem 658


Problem 658


Incomplete words II

In the context of formal languages, any finite sequence of letters of a given alphabet Σ is called a word over Σ. We call a word incomplete if it does not contain every letter of Σ.

For example, using the alphabet Σ=a,b,c, ‘ab’, ‘abab’ and ‘ ‘ (the empty word) are incomplete words over Σ, while ‘abac’ is a complete word over Σ.

Given an alphabet Σ of α letters, we define I(α,n) to be the number of incomplete words over Σ with a length not exceeding n.
For example, I(3,0)=1, I(3,2)=13 and I(3,4)=79.

Let S(k,n)=α=1kI(α,n).
For example, S(4,4)=406, S(8,8)=27902680 and S(10,100)983602076 mod 1 000 000 007.

Find S(107,1012). Give your answer modulo 1 000 000 007.


不完整的单词II

形式语言中,由给定字母表Σ中的字母构成的有限序列被称为Σ上的单词。如果一个单词不包含Σ中的全部字母,我们称这个单词是不完整的

例如,对于字母表Σ=a,b,cΣ上的单词’ab’,’ababa’和’ ‘(空单词)都是不完整的,而’abac’则是完整的。

若字母表Σ包含有α个字母,我们记I(α,n)Σ上长度不超过n的不完整单词的数目。
例如,I(3,0)=1I(3,2)=13I(3,4)=79

S(k,n)=α=1kI(α,n)
例如,S(4,4)=406S(8,8)=27902680S(10,100)983602076 mod 1 000 000 007

S(107,1012),并将你的答案对1 000 000 007取余。


Gitalking ...