Problem 25
$1000$-digit Fibonacci number
The Fibonacci sequence is defined by the recurrence relation:
$F_n = F_{n-1} + F_{n-2}$, where $F_1 = 1$ and $F_2 = 1$.
Hence the first 12 terms will be:
$$\begin{aligned}
F_1&=1\\
F_2&=1\\
F_3&=2\\
F_4&=3\\
F_5&=5\\
F_6&=8\\
F_7&=13\\
F_8&=21\\
F_9&=34\\
F_{10}&=55\\
F_{11}&=89\\
F_{12}&=144\\
\end{aligned}$$
The $12$th term, $F_{12}$, is the first term to contain three digits.
What is the first term in the Fibonacci sequence to contain $1000$ digits?
$1000$位斐波那契数
斐波那契数列是按如下递归定义的数列:
$F_n = F_{n-1} + F_{n-2}$,且$F_1 = 1$,$F_2 = 1$。
因此斐波那契数列的前12项分别是:
$$\begin{aligned}
F_1&=1\\
F_2&=1\\
F_3&=2\\
F_4&=3\\
F_5&=5\\
F_6&=8\\
F_7&=13\\
F_8&=21\\
F_9&=34\\
F_{10}&=55\\
F_{11}&=89\\
F_{12}&=144\\
\end{aligned}$$
在斐波那契数列中,第一个包含三位数字的是第$12$项$F_{12}$。
在斐波那契数列中,第一个包含$1000$位数字的是第几项?