Problem 361
Subsequence of Thue-Morse sequence
The Thue-Morse sequence {Tn} is a binary sequence satisfying:
- T0 = 0
- T2n = Tn
- T2n+1 = 1 - Tn
The first several terms of {Tn} are given as follows:
01101001100101101001011001101001….
We define {An} as the sorted sequence of integers such that the binary expression of each element appears as a subsequence in {Tn}.
For example, the decimal number 18 is expressed as 10010 in binary. 10010 appears in {Tn} (T8 to T12), so 18 is an element of {An}.
The decimal number 14 is expressed as 1110 in binary. 1110 never appears in {Tn}, so 14 is not an element of {An}.
The first several terms of An are given as follows:
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | … |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$A_n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 10 | 11 | 12 | 13 | 18 | … |
We can also verify that A100 = 3251 and A1000 = 80852364498.
Find the last 9 digits of $\sum_{k=1}^{18}A_{10^k}$.
图厄-摩尔斯序列的子序列
图厄-摩尔斯序列 {Tn}是满足下列条件的二进制序列:
- T0 = 0
- T2n = Tn
- T2n+1 = 1 - Tn
{Tn}的前几项如下所示:
01101001100101101001011001101001….
有些整数的二进制表示是序列{Tn}的子序列,我们定义{An}为将这些数排序后组成的序列。
例如,十进制数18的二进制表示为10010。10010出现在{Tn}中(从T8到T12),因此18是{An}中的元素。
十进制数14的二进制表示为1110。1110永远不会出现在{Tn}中,因此14不是{An}中的元素。
An的前几项如下所示:
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | … |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$A_n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 10 | 11 | 12 | 13 | 18 | … |
我们还可以验证A100 = 3251以及A1000 = 80852364498。
求$\sum_{k=1}^{18}A_{10^k}$的最后9位数字。