Problem 518
Prime triples and geometric sequences
Let S(n) = a+b+c over all triples (a,b,c) such that:
- a, b, and c are prime numbers.
- a < b < c < n.
- a+1, b+1, and c+1 form a geometric sequence.
For example, S(100) = 1035 with the following triples:
(2, 5, 11), (2, 11, 47), (5, 11, 23), (5, 17, 53), (7, 11, 17), (7, 23, 71), (11, 23, 47), (17, 23, 31), (17, 41, 97), (31, 47, 71), (71, 83, 97)
Find S(108).
素数三元组和等比数列
对于所有满足下列条件的三元组(a,b,c),记S(n) = a+b+c之和:
- a、b、c均为素数。
- a < b < c < n。
- a+1、b+1、c+1构成等比数列。
例如,由于存在下列三元组,S(100) = 1035:
(2, 5, 11), (2, 11, 47), (5, 11, 23), (5, 17, 53), (7, 11, 17), (7, 23, 71), (11, 23, 47), (17, 23, 31), (17, 41, 97), (31, 47, 71), (71, 83, 97)
求S(108)。